Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 14(1): 2422, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: covidwho-2305911

RESUMEN

Hong Kong experienced a surge of Omicron BA.2 infections in early 2022, resulting in one of the highest per-capita death rates of COVID-19. The outbreak occurred in a dense population with low immunity towards natural SARS-CoV-2 infection, high vaccine hesitancy in vulnerable populations, comprehensive disease surveillance and the capacity for stringent public health and social measures (PHSMs). By analyzing genome sequences and epidemiological data, we reconstructed the epidemic trajectory of BA.2 wave and found that the initial BA.2 community transmission emerged from cross-infection within hotel quarantine. The rapid implementation of PHSMs suppressed early epidemic growth but the effective reproduction number (Re) increased again during the Spring festival in early February and remained around 1 until early April. Independent estimates of point prevalence and incidence using phylodynamics also showed extensive superspreading at this time, which likely contributed to the rapid expansion of the epidemic. Discordant inferences based on genomic and epidemiological data underscore the need for research to improve near real-time epidemic growth estimates by combining multiple disparate data sources to better inform outbreak response policy.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Hong Kong/epidemiología , SARS-CoV-2/genética , Brotes de Enfermedades , Número Básico de Reproducción
2.
Virus Evol ; 8(2): veac062, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1973258

RESUMEN

China experienced a resurgence of seasonal influenza activity throughout 2021 despite intermittent control measures and prolonged international border closure. We show genomic evidence for multiple A(H3N2), A(H1N1), and B/Victoria transmission lineages circulating over 3 years, with the 2021 resurgence mainly driven by two B/Victoria clades. Phylodynamic analysis revealed unsampled ancestry prior to widespread outbreaks in December 2020, showing that influenza lineages can circulate cryptically under non-pharmaceutical interventions enacted against COVID-19. Novel haemagglutinin gene mutations and altered age profiles of infected individuals were observed, and Jiangxi province was identified as a major source for nationwide outbreaks. Following major holiday periods, fluctuations in the effective reproduction number were observed, underscoring the importance of influenza vaccination prior to holiday periods or travel. Extensive heterogeneity in seasonal influenza circulation patterns in China determined by historical strain circulation indicates that a better understanding of demographic patterns is needed for improving effective controls.

3.
Nat Commun ; 13(1): 2884, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1860372

RESUMEN

Human respiratory syncytial virus (RSV) is an important cause of acute respiratory infection with the most severe disease in the young and elderly. Non-pharmaceutical interventions and travel restrictions for controlling COVID-19 have impacted the circulation of most respiratory viruses including RSV globally, particularly in Australia, where during 2020 the normal winter epidemics were notably absent. However, in late 2020, unprecedented widespread RSV outbreaks occurred, beginning in spring, and extending into summer across two widely separated regions of the Australian continent, New South Wales (NSW) and Australian Capital Territory (ACT) in the east, and Western Australia. Through genomic sequencing we reveal a major reduction in RSV genetic diversity following COVID-19 emergence with two genetically distinct RSV-A clades circulating cryptically, likely localised for several months prior to an epidemic surge in cases upon relaxation of COVID-19 control measures. The NSW/ACT clade subsequently spread to the neighbouring state of Victoria and to cause extensive outbreaks and hospitalisations in early 2021. These findings highlight the need for continued surveillance and sequencing of RSV and other respiratory viruses during and after the COVID-19 pandemic, as mitigation measures may disrupt seasonal patterns, causing larger or more severe outbreaks.


Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Lactante , Pandemias/prevención & control , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/genética , Estaciones del Año , Victoria
4.
Nat Commun ; 13(1): 1721, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1773976

RESUMEN

Annual epidemics of seasonal influenza cause hundreds of thousands of deaths, high levels of morbidity, and substantial economic loss. Yet, global influenza circulation has been heavily suppressed by public health measures and travel restrictions since the onset of the COVID-19 pandemic. Notably, the influenza B/Yamagata lineage has not been conclusively detected since April 2020, and A(H3N2), A(H1N1), and B/Victoria viruses have since circulated with considerably less genetic diversity. Travel restrictions have largely confined regional outbreaks of A(H3N2) to South and Southeast Asia, B/Victoria to China, and A(H1N1) to West Africa. Seasonal influenza transmission lineages continue to perish globally, except in these select hotspots, which will likely seed future epidemics. Waning population immunity and sporadic case detection will further challenge influenza vaccine strain selection and epidemic control. We offer a perspective on the potential short- and long-term evolutionary dynamics of seasonal influenza and discuss potential consequences and mitigation strategies as global travel gradually returns to pre-pandemic levels.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , COVID-19/epidemiología , Humanos , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias/prevención & control , Estaciones del Año
5.
Nat Commun ; 13(1): 736, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1684024

RESUMEN

Hong Kong employed a strategy of intermittent public health and social measures alongside increasingly stringent travel regulations to eliminate domestic SARS-CoV-2 transmission. By analyzing 1899 genome sequences (>18% of confirmed cases) from 23-January-2020 to 26-January-2021, we reveal the effects of fluctuating control measures on the evolution and epidemiology of SARS-CoV-2 lineages in Hong Kong. Despite numerous importations, only three introductions were responsible for 90% of locally-acquired cases. Community outbreaks were caused by novel introductions rather than a resurgence of circulating strains. Thus, local outbreak prevention requires strong border control and community surveillance, especially during periods of less stringent social restriction. Non-adherence to prolonged preventative measures may explain sustained local transmission observed during wave four in late 2020 and early 2021. We also found that, due to a tight transmission bottleneck, transmission of low-frequency single nucleotide variants between hosts is rare.


Asunto(s)
COVID-19/epidemiología , SARS-CoV-2/genética , COVID-19/transmisión , COVID-19/virología , Genómica , Hong Kong/epidemiología , Humanos , Salud Pública , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Viaje
6.
Emerg Infect Dis ; 28(1): 247-250, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1581409

RESUMEN

We sequenced ≈50% of coronavirus disease cases imported to Hong Kong during March-July 2021 and identified 70 cases caused by Delta variants of severe acute respiratory syndrome coronavirus 2. The genomic diversity detected in Hong Kong was similar to global diversity, suggesting travel hubs can play a substantial role in surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Genómica , Hong Kong/epidemiología , Humanos , Tamizaje Masivo , SARS-CoV-2/aislamiento & purificación , Viaje
7.
Emerg Infect Dis ; 27(10): 2666-2668, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1486735

RESUMEN

We sequenced 10% of imported severe acute respiratory syndrome coronavirus 2 infections detected in travelers to Hong Kong and revealed the genomic diversity of regions of origin, including lineages not previously reported from those countries. Our results suggest that international or regional travel hubs might be useful surveillance sites to monitor sequence diversity.


Asunto(s)
COVID-19 , Enfermedades Transmisibles Importadas , Variación Genética , Hong Kong/epidemiología , Humanos , SARS-CoV-2
8.
J Virol ; 95(24): e0126721, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1443354

RESUMEN

Introduction of non-pharmaceutical interventions to control COVID-19 in early 2020 coincided with a global decrease in active influenza circulation. However, between July and November 2020, an influenza A(H3N2) epidemic occurred in Cambodia and in other neighboring countries in the Greater Mekong Subregion in Southeast Asia. We characterized the genetic and antigenic evolution of A(H3N2) in Cambodia and found that the 2020 epidemic comprised genetically and antigenically similar viruses of Clade3C2a1b/131K/94N, but they were distinct from the WHO recommended influenza A(H3N2) vaccine virus components for 2020-2021 Northern Hemisphere season. Phylogenetic analysis revealed multiple virus migration events between Cambodia and bordering countries, with Laos PDR and Vietnam also reporting similar A(H3N2) epidemics immediately following the Cambodia outbreak: however, there was limited circulation of these viruses elsewhere globally. In February 2021, a virus from the Cambodian outbreak was recommended by WHO as the prototype virus for inclusion in the 2021-2022 Northern Hemisphere influenza vaccine. IMPORTANCE The 2019 coronavirus disease (COVID-19) pandemic has significantly altered the circulation patterns of respiratory diseases worldwide and disrupted continued surveillance in many countries. Introduction of control measures in early 2020 against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has resulted in a remarkable reduction in the circulation of many respiratory diseases. Influenza activity has remained at historically low levels globally since March 2020, even when increased influenza testing was performed in some countries. Maintenance of the influenza surveillance system in Cambodia in 2020 allowed for the detection and response to an influenza A(H3N2) outbreak in late 2020, resulting in the inclusion of this virus in the 2021-2022 Northern Hemisphere influenza vaccine.


Asunto(s)
COVID-19/epidemiología , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/complicaciones , Gripe Humana/inmunología , Cambodia/epidemiología , Brotes de Enfermedades , Humanos , Gripe Humana/epidemiología , Gripe Humana/virología , Laos , Funciones de Verosimilitud , Filogenia , SARS-CoV-2 , Vietnam
9.
J Travel Med ; 28(8)2021 12 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1429273

RESUMEN

BACKGROUND: A large cluster of 59 cases were linked to a single flight with 146 passengers from New Delhi to Hong Kong in April 2021. This outbreak coincided with early reports of exponential pandemic growth in New Delhi, which reached a peak of > 400 000 newly confirmed cases on 7 May 2021. METHODS: Epidemiological information including date of symptom onset, date of positive-sample detection and travel and contact history for individual cases from this flight were collected. Whole genome sequencing was performed, and sequences were classified based on the dynamic Pango nomenclature system. Maximum-likelihood phylogenetic analysis compared sequences from this flight alongside other cases imported from India to Hong Kong on 26 flights between June 2020 and April 2021, as well as sequences from India or associated with India-related travel from February to April 2021 and 1217 reference sequences. RESULTS: Sequence analysis identified six lineages of SARS-CoV-2 belonging to two variants of concern (Alpha and Delta) and one variant of public health interest (Kappa) involved in this outbreak. Phylogenetic analysis confirmed at least three independent sub-lineages of Alpha with limited onward transmission, a superspreading event comprising 37 cases of Kappa and transmission of Delta to only one passenger. Additional analysis of another 26 flights from India to Hong Kong confirmed widespread circulation of all three variants in India since early March 2021. CONCLUSIONS: The broad spectrum of disease severity and long incubation period of SARS-CoV-2 pose a challenge for surveillance and control. As illustrated by this particular outbreak, opportunistic infections of SARS-CoV-2 can occur irrespective of variant lineage, and requiring a nucleic acid test within 72 hours of departure may be insufficient to prevent importation or in-flight transmission.


Asunto(s)
Viaje en Avión , COVID-19 , Enfermedad Relacionada con los Viajes , COVID-19/epidemiología , COVID-19/transmisión , Brotes de Enfermedades , Hong Kong , Humanos , India , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA